
 DEPARTMENT OF COMPUTER SCIENCE
CHAIR FOR REAL TIME SYSTEMS

Profiling Linux System Call Activity

Student Research Project

Author: Sascha Dienelt
Supervisor: Dr. Robert Baumgartl
Date of Submission: 12.12.2006

Profiling Linux System Call Activity – Student Research Project 12.12.2006

 page 2 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

Contents

Contents... 3
1. Introduction... 5

1.1 VisioOS – Visual Simulation of Operating Systems... 5
1.2 Simulating real applications ... 5
1.3 Linux system calls.. 5

2. State of the art .. 6
2.1 Methods ... 6
2.2 Hooking .. 6
2.3 Kernel modification .. 8
2.4 Strace... 8
2.5 Ptrace... 8
2.6 Conclusion ... 9

3. The Concept... 10
3.1 Kernel modification .. 10
3.2 Ptrace... 11
3.3 The converter ... 12

4. Details of Implementation... 13
4.1 Kernel modification .. 13
4.2 Ptrace... 14
4.3 The converter ... 14
4.4 The user interface .. 16

5. Measurement ... 18
5.1 A small test program .. 18
5.2 Results ... 19

6. Summary and discussion ... 20
6.1 Performance... 20
6.2 Usability.. 20
6.3 Possible improvements.. 20

Appendix A. Bibliography .. 21
Appendix B. Figures .. 22

 page 3 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

 page 4 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

1. Introduction

1.1 VisioOS – Visual Simulation of Operating Systems
VisioOS [1] is a project simulating an operating system and its hardware for educational purposes. It is
divided into the simulation core and the user interface. The core consists of five components:

• Process management
• Basic memory management
• High level memory management (stack, heap and shared memory)
• File management
• External storage management

Every component is configurable by the user interface.

OS components

 GUI

interpreter

random
data

 real
 data

Linux

Windows

......

Figure 1.1 placement

The interpreter is able to send a number of commands to the OS components, so several processes can be
simulated. These commands can be user defined by a C file, randomly generated or created by the run of
an application on a real operating system.

1.2 Simulating real applications
To simulate the behavior of real applications in another operating system than Linux or Windows, it’s
necessary to record all system calls in the original system and convert the received data into information the
interpreter of the simulation is able to work with.
The goal of this project is to develop a tool providing the possibility to log all system calls a process and its
sons execute and also measure the number of clock cycles every process compute in user mode between
the system calls. The received data should be suitable input data for the interpreter of VisioOS.

1.3 Linux system calls
A process is able to use services provided by the kernel by making a system call [2]. Every system call has
a specific number. This number is written into the EAX register. There can be up to 6 parameters, which are
set into the registers EBX, ECX, EDX, EDI, ESI and EBP. If a system call needs more than 6 values to pass,
it has to use pointers to structures, where the additional parameters are stored.
To switch to kernel mode the software interrupt 0x80 is called and the system call handler calls the system
call services routine according to the system call number found in the EAX register. The address of every
system call service routine is stored in the system call table. The system call’s return value is stored in the
EAX register.

 page 5 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

2. State of the art

2.1 Methods
There are different ways to gain the system calls of a process.
The first idea is to catch them in kernel mode and log the received data into a file. To act in kernel mode it is
necessary to develop a driver [3]. This driver can change the system calls in a way that own functions were
used instead of the original ones. This procedure is called “hooking”.
An easier way is to modify the system call service routines itself and integrate some additional services into
the kernel allowing to control and perform the logging process. In this method a driver must also be
developed to control which process have to be logged.
The most user-friendly way would be a method just acting in user mode. Strace is such an application, which
provides the possibility to log all system calls of a given process and its sons. But it doesn’t offer all needed
information.
Strace uses the system call Ptrace for its procedures. So this could be a good method to gain all required
data.

2.2 Hooking
Hooking describes the method injecting own code in an active kernel. There are various possibilities to do
this. The easiest way is to modify in kernel mode the system call table, where all addresses of the system
call service routines are stored.
We have to develop a driver (because they act in kernel mode) which saves the original address and stores
the address of his own function. The own function calls the original function, makes the logging stuff and
returns the value the original function returned.
The following example shows how to hook the fork system call. Unfortunately this method does not work for
all system calls. Mostly such a proceeding causes a kernel panic.

[...]

extern void *sys_call_table[]; //The system call table
int (*old_sys_fork)(struct pt_regs); //Place to store the original address

[...]

asmlinkage int hook_sys_fork(struct pt_regs regs) {

int newpid;

//Call the original function
newpid=(*old_sys_fork)(regs);

//Do logging stuff
[...]

//Return the value given by the original function
return newpid;

}
static int __init mod_init(void) {

[...]

//Save original address
old_sys_fork = (void *) sys_call_table[__NR_fork];
//Store new address
sys_call_table[__NR_fork] = hook_sys_fork;

return 0;

}
static void __exit mod_exit(void) {

[...]

 page 6 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

//Restore original address
sys_call_table[__NR_fork] = old_sys_fork;

}
module_init(mod_init);
module_exit(mod_exit);

Figure 2.1 example for hooking sys_fork with sys_call_table modification

There is another method that hooks the system call service routines without changing the system call table
[4]. It overwrites the first assembler instructions of the service routine with a jump to its own one. When the
service routine is called the own instruction can now be executed. After that we execute the overwritten
instructions and jump back to the service routine. This method is very difficult, because every service routine
has its own start instructions and must be handled separately. Also the return value of the system call is
unknown.

[...]

extern void *sys_call_table[]; //The system call table

//New code
unsigned char ab_jmpcode1[7] = "\xb8\x67\x45\x23\x01" /* mov $address, %eax */
 "\xff\xe0"; /* jmp *%eax */

//Old code
unsigned char ab_bcode[20] =
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" /* 13 nops */
 "\xb8\x67\x45\x23\x01" /* mov $address, %eax */
 "\xff\xe0"; /* jmp *%eax */

void hook_sys_execve(int a)
{

//Do logging stuff
[...]

asm volatile (

"mov %ebp, %esp;" /* restore stack */
"popl %ebp;"
"jmp ab_bcode"

);
}
static int __init mod_init(void) {

int i;
char *ptr;
unsigned int addr = (unsigned int) &hook_sys_execve;

[...]

ptr = (char *) &addr; /* get from_jump address */
for(i=0;i<4;i++)

ab_jmpcode1[1+i]=ptr[i];
ptr = sys_call_table[__NR_execve];
for(i=0;i<7;i++) {

ab_bcode[i]=ptr[i]; /* backup overwritten bytes */
ptr[i]=ab_jmpcode1[i]; /* hook */

}
addr = (unsigned int) ptr+7; /* get to_jump address */
ptr = (char *) &addr;
for(i=0;i<4;i++)

ab_bcode[14+i]=ptr[i];

return 0;
}

 page 7 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

static void __exit mod_exit(void) {
int i;
char *ptr;

[...]

ptr = sys_call_table[__NR_execve];
for(i=0;i<7;i++)
ptr[i] = ab_bcode[i]; /* restore */

}
module_init(mod_init);
module_exit(mod_exit);

Figure 2.2 example for hooking sys_execve without sys_call_table modification

A big problem of hooking is that the position of the system call table must be known. Until Kernel 2.4 this
address is given, but with Kernel 2.6 it isn’t exported any longer. So it has to be searched in kernel memory
by looking for some patterns.

2.3 Kernel modification
Much easier is to modify the kernel code. The logging instructions are inserted directly in the system call
service routines and the kernel has to be recompiled. This logging method is very fast and stable.
The kernel is extended with additional functions to:

• Add process ids to the table of logged processes
• Check if a process should be logged
• Start / stop logging
• Check if logging is enabled
• Make a log entry

To control the logging there is also a driver required.

2.4 Strace
Strace [5] is an application which writes all system calls with arguments and returned value of a process into
an output stream.
But we need additional information to calculate the time the process spent in user mode since the last
system call and Strace cannot be extended easily.
Strace uses Ptrace to gain its data, maybe we can use it a similar way.

2.5 Ptrace
Ptrace [6] is a system call which allows processes to observe and influence other processes if they have the
right to do this. It is often used by debuggers to do a step by step execution of an application.
With this method all logging operations can be done in user mode.

 page 8 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

2.6 Conclusion
 Kernel 2.4 Kernel 2.6
Hooking with system call
table modification

 kernel independent
 causes problems with many system

 calls

 kernel independent (restricted)
 causes problems with many system

 calls
 position of the system call table

 unknown
Hooking with system call
service routine machine-
code modification

 can be used with all system calls
no modification of the system call table

 necessary
 very complex

 can be used with all system calls
 no modification of the system call

 table necessary
 very complex
 position of the system call table

 unknown
Modification of the
Kernel code

 can be done with all kernel versions
 causes no problems
 measure system must get a new kernel

Ptrace can be done with all kernel versions
 runs in user mode without kernel modification

Because it’s very difficult to gain the address of the system call table in Kernel 2.6 the hooking methods are
not realizable there.
A modified kernel causes the lowest effort to develop but the highest to install at the measure system.
Ptrace seems to be a very user friendly method to log all required information on every system without any
super user rights needed.

 page 9 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

3. The Concept

3.1 Kernel modification
The new functions for the logging service are declared in “kernel.h”, which is included by nearly every kernel
source file.
The functions are implemented in “printk.c”.
In every relevant system call service routine the logging function is called with all necessary arguments.
This logging function has to check if logging is enabled. If this is not the case the system call resumes
immediately.
Otherwise the matching entry in the system call counter table is increased. This table is just for additional
information and contains the number of system calls executed during the logging process at all. It is written
into the kernel log (/var/log/messages) when logging is finished.
After that the function checks if the actual process has to be logged. If the processes table does not contain
the process id the system call resumes.
Otherwise the logging is disabled to prevent the logging of system calls used by the logging function.
Thereafter the system call command is converted into a CSV entry.
Now the log file (/tmp/log.log) is opened, the new line is written into it and the file is closed.
The logging is enabled and the system call can be resumed.

Figure 3.1 logging process

After including “kernel.h” the following logging services can be used:

• Management of the logged processes
• Start and stop of the logging
• Add a logging entry
• Management of the system call counter

To communicate with the services of the kernel (e.g. start the logging of a process) there has to be
developed an interface.

 page 10 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

This interface is a driver, a Linux kernel module (LKM). Loading the module causes the log file to be flushed,
maybe hook some system calls and the kernel can start logging. Because the processes table is still empty
no process is logged until an id is inserted into it.
The module can be used as a character based device. The process ids of the processes to be logged are
written on the device.
When the module is unloaded, the hooked system calls must be unhooked by restoring the old entries in the
system call table. The logging finishes now.

3.2 Ptrace
The system call Ptrace can be used to give a process a property that indicates that this process is traced.
Mostly Ptrace is used this way [7]:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>

int main() {

pid_t child;
struct user_regs_struct regs;

child = fork();
if(child == 0) {

ptrace(PTRACE_TRACEME, 0, NULL, NULL);
execl("/bin/ls", "ls", NULL);

} else {
wait(NULL);
ptrace(PTRACE_GETREGS, child, NULL, ®s);
printf("The child made a system call %ld\n", regs.orig_eax);
ptrace(PTRACE_CONT, child, NULL, NULL);

}
return 0;

}
Figure 3.2 a simple Ptrace example

When the traced process is attached by using Ptrace with “PTRACE_TRACEME” itself or by another
process using Ptrace with “PTRACE_ATTACH”, there will be sent a signal to the tracing process every time
the traced process enters or leaves a system call. So the tracing process stops waiting and can read and
write all data of the traced one. When he finishes his work he calls Ptrace with “PTRACE_CONT” and the
traced process continues.

 page 11 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

Figure 3.3 Ptrace

Ptrace just traces one process and does not handle process families, so we have to do this when the traced
process calls a fork.

3.3 The converter
Because the recorded data is in CSV format and the interpreter expects a C-like code, the data needs to be
converted. The converter must read every line of the CSV file, assign the system call and handle the
parameters and the return value. The return value must be stored in a variable and when the value is reused
by another system call in a similar context as parameter, the value must replaced by the variable.

 page 12 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

4. Details of Implementation

4.1 Kernel modification
In every relevant system call service routine the following function is called.

void sys_call_log2(const char *function, ...);

The function expects as first argument the name of system call followed by the return value and the
parameters of it.
Additional in the fork routine the new process id is added to the processes table, so the complete process
family can be logged.
To control the processes to log, a module must be loaded. It offers an interface to add process ids to the
processes table.

The module can be loaded with the following shell command:

insmod log.o

Normally “insmod” can only be executed by the super user.
After the command the module should be loaded successfully.
If the device "/dev/klog" does not yet exist., it must be created with the following command:

mknod /dev/klog c 240 0

The command “mknod” creates the device. "/dev/klog" is the position of the new device, “c” means that it is a
character based one, “240” is the major and “0” the minor number of the module.
To make the device accessible to all users the rights must be set:

chmod 666 /dev/klog

Now we can use this device in our user mode applications to communicate with the kernel logging service.

Opening the device:

handle=open("/dev/klog", O_RDWR);

Writing on the device:

write(handle, "1234", 4);

Closing the device:

close(handle);

These commands would log all system calls of the process with the id “1234” until the device is closed.
The logged data are located in the file “/tmp/log.log” in CSV format.

To log an application the tool “runner” can be used. It expects the file to execute and log as argument and
handles the communication with the module.

To unload the module the super user has to use the following shell command:

rmmod log

Now the module should be unload successfully and the kernel log “/var/log/messages” contains some
additional information about the total number of all system calls.

 page 13 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

4.2 Ptrace
The Ptrace based logging tool expects the destination of the log file and the application to execute and log.
The tool just creates a new process, which calls Ptrace with “PTRACE_TRACEME” and executes the
application. The parent process waits for every system call and writes the system call number, all register
values and relevant time data into the log file.
To log the whole process family the tracing process must create a new one, when the traced process makes
a fork. The new traced process must be attached to the created one by the tracing process. This happens
with Ptrace and “PTRACE_ATTACH”. So the new tracing process becomes the parent of the process to
trace. This may cause problems with some inter-process communication issues (e.g. semaphores).
Another problem is that the new process may start calling system calls before the parent leaves the fork
system call and knows the new process id.
When system calls uses pointer to structures in there arguments, required data must be read with Ptrace
and “PTRACE_PEEKDATA”.

[...]

if (regs.orig_eax == 162) {

seconds=ptrace(PTRACE_PEEKDATA, pid, regs.ebx+28, NULL);

[...]

}

[...]

Figure 4.1 handling sys_nanosleep

In the above example Ptrace is been used to read parts of the “timespec” structure to get the number of
seconds the process wants to sleep.

To get the number of cycles the traced process computes in user mode, we need “utime”. It can be
accessed via the virtual file system “/proc/PID/stat”. This value, the actual timestamp and the number of
clock cycles are written besides the register values and the process id into the log file.

./runner <log file> <executable> [<arguments>]

The Ptrace logging tool expects two arguments. The first is the destination of the CSV log file and the
second is the file to be executed with its parameters.

4.3 The converter
The interpreter of VisioOS needs a C-like code and not a CSV file. So it is necessary to develop a converter
which creates a C file for every single process and handles the values returned by a system call. These
values have to be replaced by a variable, because the returned value by e.g. “open” can be reused by
“read”.

The converter reads the CSV file line by line and every command is assigned to a process by its id. This
process id is stored in a list if it is not already there.
The arguments were saved in the variables list. It is important that there exists no variable with same
function and same value.
Finally the system call is stored as C-code with the fitting variables in the system call list.

 page 14 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

Figure 4.2 converter

The above figure shows how the converter handles a line of the CSV file. Firstly it checks if the process
already exists in the processes table. Then it refers the system call number to the system call and takes all
relevant parameters and the returned value. In this case 192 is the number of the system call “mmap2”. The
analog command for the interpreter is “AllocMem”. It requires the size of the memory to be allocated and
returns the address.
The timestamp and the clock are used to calculate the clock frequency. If “utime” has been increased since
the last system call “WorkingForTicks” is added as command with the number of clock cycles as argument.

After the complete processing of the CSV file for every single process a C file is generated, which can be
read by the interpreter of VisioOS.

./log2c <log file> <c file destination>

The converter expects two arguments. The first is the position of the CSV log file and the second is the path
where the INS and C files should be stored.

 page 15 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

4.4 The user interface
For an easier handling there is a graphical user interface. It is written in Java and so it requires the Java
runtime environment.
It is divided into three pages:
On the start page there are some introducing words about the project and the proceeding of the application.

Figure 4.3 screenshot: start page

The log page can be reached by the menu. Here the file to execute and to log, the tracing application and
the log file destination can be chosen.

Figure 4.4 screenshot: log page

 page 16 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

The convert page can be reached by the menu. Here the log file position, the output file destination path and
the converting application can be chosen.

Figure 4.5 screenshot: convert page

 page 17 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

5. Measurement

5.1 A small test program
To test the overhead of the logging extensions, a simple application is required which just calls some system
calls.

#include "stdio.h"
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>

int main(void)
{
 int i;
 char puffer[100];
 int *mem;
 FILE *handle;

 for (i=0;i<10;i++) {
 strcpy(puffer,"This text is in \"test.txt\"\n");
 handle = fopen("test.txt", "w");
 fputs(puffer, handle);
 fgets(puffer, 80, handle);
 fclose(handle);
 mem = malloc(1024*sizeof(int));
 free(mem);
 }
 return 0;
}

Figure 5.1 source of the test program

The above code just calls 100 times the system calls “open”, “write”, “read”, “close”, “malloc” and “free”. To
measure the execution time an additional program executes the logging application with the test program as
parameter.

 page 18 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

5.2 Results
The execution time of the test program was measured 10 times without any logging tool, with kernel logging
and with Ptrace logging.

Figure 5.2 performance

Kernel logging just causes a small overhead but the execution time of the test program with Ptrace logging
is nearly 5 times higher than without logging.
So Ptrace logging can cause performance problems with big and complex processes to log.

 page 19 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

6. Summary and discussion

6.1 Performance
The user mode logging has a much worse performance than the kernel method. This may be caused by the
system calls the tracing process has to do. So every system call by the traced process produces at least 8
additional calls.
The kernel version has not to do system calls and can use the system call service routines directly. So the
overhead is much lower.
But for processes having not a long execution time the performance issue is not much important.

6.2 Usability
When the user wants to use the kernel logging method on his system, he has to patch his kernel, recompile
and install it. After that he has to load the module and create the device. For all these actions he must have
super user rights. This is not very user friendly and for experts only.
The Ptrace method is easy to use and needs no preparation and no super user rights.

6.3 Possible improvements
To improve the performance it’s necessary to avoid too many system calls made by the tracing process.
This may be done by writing the logged data not directly into the file, but in a shared memory buffer. Also it’s
not necessary to log all system calls and all registers.
Maybe also other logging methods can be used e.g. library hooking.

 page 20 of 22

Profiling Linux System Call Activity – Student Research Project 12.12.2006

Appendix A. Bibliography

[1] Visual Simulation of Operating Systems

http://osg.informatik.tu-chemnitz.de/de/animationen-und-simulationen/visual-simulation-of-operating-
systems.html

[2] Daniel P. Bovet, Marco Cesati
Understanding the Linux Kernel, 3rd Edition

[3] Eva-Katharina Kunst, Jürgen Quade
Linux Treiber entwickeln
http://ezs.kr.hsnr.de/TreiberBuch/

[4] Yet another article about stealth modules in Linux
http://packetstormsecurity.org/9908-exploits/linux_stealth_module.txt

[5] Das Linux Anwenderhandbuch - Strace
http://www.linux-ag.de/linux/LHB/node105.html

[6] Ptrace man page
http://unixhelp.ed.ac.uk/CGI/man-cgi?ptrace+2

[7] Linux Journal - Playing with ptrace, Part I
http://www.linuxjournal.com/article/6100

 page 21 of 22

http://osg.informatik.tu-chemnitz.de/de/animationen-und-simulationen/visual-simulation-of-operating-systems.html
http://osg.informatik.tu-chemnitz.de/de/animationen-und-simulationen/visual-simulation-of-operating-systems.html
http://ezs.kr.hsnr.de/TreiberBuch/
http://packetstormsecurity.org/9908-exploits/linux_stealth_module.txt
http://www.linux-ag.de/linux/LHB/node105.html
http://unixhelp.ed.ac.uk/CGI/man-cgi?ptrace+2
http://www.linuxjournal.com/article/6100

Profiling Linux System Call Activity – Student Research Project 12.12.2006

Appendix B. Figures

Figure 1.1 placement... 5
Figure 2.1 example for hooking sys_fork with sys_call_table modification... 7
Figure 2.2 example for hooking sys_execve without sys_call_table modification .. 8
Figure 3.1 logging process .. 10
Figure 3.2 a simple Ptrace example.. 11
Figure 3.3 Ptrace... 12
Figure 4.1 handling sys_nanosleep .. 14
Figure 4.2 converter .. 15
Figure 4.3 screenshot: start page ... 16
Figure 4.4 screenshot: log page.. 16
Figure 4.5 screenshot: convert page... 17
Figure 5.1 source of the test program... 18
Figure 5.2 performance ... 19

 page 22 of 22

	Contents
	1. Introduction
	1.1 VisioOS – Visual Simulation of Operating Systems
	1.2 Simulating real applications
	1.3 Linux system calls

	2. State of the art
	2.1 Methods
	2.2 Hooking
	2.3 Kernel modification
	2.4 Strace
	2.5 Ptrace
	2.6 Conclusion

	3. The Concept
	3.1 Kernel modification
	3.2 Ptrace
	3.3 The converter

	4. Details of Implementation
	4.1 Kernel modification
	4.2 Ptrace
	4.3 The converter
	4.4 The user interface

	5. Measurement
	5.1 A small test program
	5.2 Results

	6. Summary and discussion
	6.1 Performance
	6.2 Usability
	6.3 Possible improvements

	Appendix A. Bibliography
	Appendix B. Figures

